Augmented / Virtual Reality


As you might notice, I’ve been playing with augmented reality for a while, but now there is a possibility to connect augmented reality with new wave of interest in virtual reality. Now days there is a huge campaign to popularize virtual reality to be used by public for a first time as a mass made product. This mania started probably with super cheap solution from google. The idea was just to split your smartphone’s screen to stereoscopic view with an app, and than just to clip it in to cardboard holder with two enlarging lenses and magnet trigger.  I as a developer of augmented reality apps didn’t miss this mania and I tested this feature on my 3D printed headset. I was amazed by future possibilities and later I ordered Samsung Gear VR headset for my Samsung Gallaxy S6. Contemporary I’m working on making AR_VR apps for Android devices to add virtual content in stereoscopic view and match it to target image/object in real world. The image is fed trough back camera on the device and split in to stereo, than the virtual content is added if the target is recognized and final image is displayed on the split screen and perceived by each eye individually. This is another great tool for any designer to show virtual designs to costumers during the period before the production. The advantage is in natural stereo mode display and authentic scale comparison in real world environment.

target image/object: (this cube(100x100x100 mm) with QR codes on it should be placed in real world environment)

FRACTALS are back


My interest in fractals haven´t vanished, so I decided to use them again, this time in 3D. My basic tool to generate fractals is a free software for modeling and rendering of fractal geometries called Mandebulb. In general you can discover new shapes, structures or whole new worlds in it. There are several examples predefined in libraries ready to load and play with, or you can set your own straight from scratch. You can also browse internet with search for: FRACTALS or MANDEBULB and you will find hunderds of photos and videos and sometimes people do share their definitions for particular image. For me as designer and artist are these whole new worlds you can’t even imagine in your dreams fascinating and amazing source of inspiration.





Recently, I’ve been playing with the idea of using new possibilities of IOT (internet of things) in my projects. I have been using Arduino and Raspberry-Pi in my projects for a while, so that´s why it was my first choice to use them as hardware. These familiar open source devices to me, are quite easy to setup and  straight forward to use, with amazing and big community of users sharing their skills, codes and guides online.

For testing of IOT. I, as non programmer, would personally recommend new Raspberry WebIOPi software in tandem with free on-line IP address provider system With this setup you can use GPIO pins as I/O straight on Raspberry, or you can expand them, by connecting Arduino board trough (USB/I2C/SPI) communication. With Arduino connected, it opens up all possibilities of using Arduino shields and sensors available on Raspberry-Pi as master commander. WebIOPi (Javascript/HTML client web interface) can be ,as default, used on local network, but weaved services allows you to use all these features online from anywhere any time.

This can be used basically to remotely control devices as home automation (turn on/off heating/lighting …) or as original responsive design products remotely commanded trough custom UI (user interface) in any web browser or as an app in customer’s device.

There are many other’s open source software for Raspberry-Pi with web interface, mostly focused at home automation as openHAB, but they seem’s to me a bit more complex than necessary for basic purposes.


ESP8266 is quite new wireless LUA based microcontroller, it is possible to use it with Arduino IDE as well, which is handy. This module runs at 3,3V and you can connect it into your existing local network or use it as standalone acesspoint / hotspot. It can host web server based control that you can manipulate from any connected device trough web browser. With it’s dimensions of 16x24mm, it’s one of the best options NOW for developing simple wireless IOT devices. The ESP8266 – E12 I´m using for my projects has  VCC(3,3V), GND, 17 GPIO’s incluiding serial rx/tx pins and SPI, one ADC and PCB antenna. There is also an option to use this device attached to the breakout board (great for uploading of software before build in to the device where there is not necessary serial connection) or to use all at one board solution as Node-MCU board, which has built in usb to uart shifter, 5v to 3,3V power converter and two useful buttons, one for code upload and one for reset. Possibility to connect SD card straight trough SPI allow’s you to have server big as much as you wish to have.


Sun Tracker in progress

I´m working on mechanical and optical system that is going to move plane towards the sun during the day and use it´s energy to produce electric power, that may charge your phone for example . It might also work opposite way and illuminate interior during the cloudy days or at night, as it would sun if it could. Now it is in the stage where the mechanical components does work in small scale, and I´m able to rotate the plane 360° around in angle up to 45°. Next step I´m working on is to scale up the whole concept and to design the final form.

New parabolic bowls made on IGS 2015

These are my new bowls I designed in occasion of IGS (International Glass Symposium) 2015 held in Nový Bor this autumn. They were made in participation with company TGK. Bowls are made of two sheets of transparent clear or colored glass, slumped in to hollow circular mold, and connected with transparent silicone. One type is also coated by aluminium vapors inside.


3D printing


In the first image you can see finished glass cup model printed out of ABS plastic. In the lower pictrue you can see the same cup next to the 3D printed model of mold part (white), and the gray/silver rest are the actual mold parts.

Hooray!!! Graduated at AAAD


I´m pleased to announce that I just finished my master studies at AAAD / UMPRUM in Prague.

Here is a description of my diploma work I showed at the graduation show in the “Glass studio”.
My work consist´s of three separate parts, but all of them are connected to the topic, which is “Science in the field of applied arts”.

This theme came out from my interest in popular science I have since 2006. I have red many books focused at the theoretical subjects from many different fields of science. In general my favorites are Math, Theoretical Physics, Biology and new Advanced Technologies. More specific these are String theory, Hyperspace, Deterministic chaos, Quantum mechanics, Theory of relativity or space division (Platonic / Archimedian solids, their higher dimension representatives),Crystallography (tiling and lattices).

Three projects I showed at graduation show are Fullerene doses, Lindemayer System decorative drink set and Phyllotaxis lighting. Their first word in name came from the subject of inspiration for a given case.

#1 Fullerenes are doses which were designed for press molding and machine cutting at Czech company BOMMA. The whole pattern which determinate’s mathematical formula, came from the space division of geodetic domes. These structures “Fullerenes” are named and best known because of American architect Buckminster Fuller, who used them during post WW2 period, for EXPO pavilions and in his visions for future architecture. The natural structures Fullerenes were named because of their popularizer and does use the same geometry for carbon molecules. They were predicted  in 70’s and discovered during 80’s.
#2 Drinking set inspired by Lindenmayer’s systems, is composed of six types of glasses for different types of wines, water and beer, in addition, there are jug for water or beer and carafe for wine. Whole set does use historical look with plant illustrations on it. This decoration looks to fit the historical period, but it’s sandblasted decors are based on the mathematical graphical algorithm of Lindenmayer’s systems, they are typically used for computer modeling of plants. This method of modeling works on the principle of fractals and it is possible to generate natural species as well as artificial ones.
The formulas and variables used for generating exactly these plants were sandblasted on the foot of each single glass. This was made to surprise the user, because these at the first sight poetic looking plants waving in the summer wind, can be mathematically described by simple formula.
#3 The last project is Phyllotaxis, this design was made in cooperation with Czech company Lasvit. This was planned to be a kinematic lighting sculpture with physical glass mirror triangles move-able in one direction to make an animation all togeather. The whole concept is based on 3m in diameter parabolic shape divided in to triangles 600 triangles. The division came from phyllotaxy, the mathematical model of the leaf and seed placement in the blossom. This simple formulas does use Fibonacci sequence numbers and hyperbolic spirals in opposite directions to generate the most efficient division of the plane during the growth.
For designing all of these three projects I used new promising technique of parametric modeling in Grasshopper plugin for Rhino 5.0 CAD program.
This method allows me to easily build-up a program made of structure of modules which determinate’s the shape trough variables in it, so you can easily and precisely change the whole setup without manual modeling.